ABOUT US

Wednesday, 23 November 2016

METACOGNITION



METACOGNITION


Metacognition is defined as "cognition about cognition", or "knowing about knowing". It comes from the root word "meta", meaning beyond. It can take many forms; it includes knowledge about when and how to use particular strategies for learning or for problem solving. There are generally two components of metacognition: knowledge about cognition, and regulation of cognition.
Metamemory, defined as knowing about memory and mnemonic strategies, is an especially important form of metacognition. Differences in metacognitive processing across cultures have not been widely studied, but could provide better outcomes in cross-cultural learning between teachers and students.
Some evolutionary psychologists hypothesize that metacognition is used as a survival tool, which would make metacognition the same across cultures. Writings on metacognition can be traced back at least as far as Perì Psūchês; and the Parva Naturalia of the Greek philosopher Aristotle.
"Metacognition" is one of the latest buzz words in educational psychology, but what exactly is metacognition? The length and abstract nature of the word makes it sound intimidating, yet its not as daunting a concept as it might seem. We engage in metacognitive activities every day. Metacognition enables us to be successful learners, and has been associated with intelligence (e.g., Borkowski, Carr, & Pressley, 1987; Sternberg, 1984, 1986a, 1986b). Metacognition refers to higher order thinking which involves active control over the cognitive processes engaged in learning. Activities such as planning how to approach a given learning task, monitoring comprehension, and evaluating progress toward the completion of a task are metacognitive in nature. Because metacognition plays a critical role in successful learning, it is important to study metacognitive activity and development to determine how students can be taught to better apply their cognitive resources through metacognitive control.
"Metacognition" is often simply defined as "thinking about thinking." In actuality, defining metacognition is not that simple. Although the term has been part of the vocabulary of educational psychologists for the last couple of decades, and the concept for as long as humans have been able to reflect on their cognitive experiences, there is much debate over exactly what metacognition is. One reason for this confusion is the fact that there are several terms currently used to describe the same basic phenomenon (e.g., self-regulation, executive control), or an aspect of that phenomenon (e.g., meta-memory), and these terms are often used interchangeably in the literature. While there are some distinctions between definitions (see Van Zile-Tamsen, 1994, 1996 for a full discussion), all emphasize the role of executive processes in the overseeing and regulation of cognitive processes.

DEFINITIONS

This higher-level cognition was given the label metacognition by American developmental psychologist John Flavell (1979).
The term metacognition literally means cognition about cognition, or more informally, thinking about thinking. Flavell defined metacognition as knowledge about cognition and control of cognition.
 J. H. Flavell (1976, p. 232). Andreas Demetriou, in his theory, one of the neo-Piagetian theories of cognitive development, used the term hyper cognition to refer to self-monitoring, self-representation, and self-regulation processes, which are regarded as integral components of the human mind. Moreover, with his colleagues, he showed that these processes participate in general intelligence, together with processing efficiency and reasoning, which have traditionally been considered to compose fluid intelligence.
Metacognition also thinks about one's own thinking process such as study skills, memory capabilities, and the ability to monitor learning. This concept needs to be explicitly taught along with content instruction. Metacognitive knowledge is about our own cognitive processes and our understanding of how to regulate those processes to maximize learning.

COMPONENTS

The term "metacognition" is most often associated with John Flavell, (1979). According to Flavell (1979, 1987), metacognition consists of both metacognitive knowledge, metacognitive regulation and metacognitive experiences. Metacognitive knowledge refers to acquired knowledge about cognitive processes, knowledge that can be used to control cognitive processes. Flavell further divides metacognitive knowledge into three categories: knowledge of person variables, task variables and strategy variables.
  1. Metacognitive knowledge (also called metacognitive awareness) is what individuals know about themselves and others as cognitive processors.
  2. Metacognitive regulation is the regulation of cognition and learning experiences through a set of activities that help people control their learning.
  3. Metacognitive experiences are those experiences that have something to do with the current, on-going cognitive endeavor.

METACOGNITIVE KNOWLEDGE

Metacognition refers to a level of thinking that involves active control over the process of thinking that is used in learning situations. Planning the way to approach a learning task, monitoring comprehension, and evaluating the progress towards the completion of a task: these are skills that are metacognitive in their nature.
Metacognition includes at least three different types of metacognitive awareness when considering metacognitive knowledge:
  1. Declarative Knowledge: refers to knowledge about oneself as a learner and about what factors can influence one's performance. Declarative knowledge can also be referred to as "world knowledge".
  2. Procedural Knowledge: refers to knowledge about doing things. This type of knowledge is displayed as heuristics and strategies. A high degree of procedural knowledge can allow individuals to perform tasks more automatically. This is achieved through a large variety of strategies that can be accessed more efficiently.
  3. Conditional knowledge: refers to knowing when and why to use declarative and procedural knowledge. It allows students to allocate their resources when using strategies. This in turn allows the strategies to become more effective.
Stated very briefly, knowledge of person variables refers to general knowledge about how human beings learn and process information, as well as individual knowledge of one's own learning processes. For example, you may be aware that your study session will be more productive if you work in the quiet library rather than at home where there are many distractions. Knowledge of task variables includes knowledge about the nature of the task as well as the type of processing demands that it will place upon the individual. For example, you may be aware that it will take more time for you to read and comprehend a science text than it would for you to read and comprehend a novel.
Finally, knowledge about strategy variables include knowledge about both cognitive and metacognitive strategies, as well as conditional knowledge about when and where it is appropriate to use such strategies.

 

METACOGNITIVE REGULATION

Similar to metacognitive knowledge, metacognitive regulation or "regulation of cognition" contains three skills that are essential.
  1. Planning: refers to the appropriate selection of strategies and the correct allocation of resources that affect task performance.
  2. Monitoring: refers to one's awareness of comprehension and task performance
  3. Evaluating: refers to appraising the final product of a task and the efficiency at which the task was performed. This can include re-evaluating strategies that were used.
Similarly, maintaining motivation to see a task to completion is also a metacognitive skill. The ability to become aware of distracting stimuli – both internal and external – and sustain effort over time also involves metacognitive or executive functions. The theory that metacognition has a critical role to play in successful learning means it is important that it be demonstrated by both students and teachers.
Students who demonstrate a wide range of metacognitive skills perform better on exams and complete work more efficiently. They are self-regulated learners who utilize the "right tool for the job" and modify learning strategies and skills based on their awareness of effectiveness. Individuals with a high level of metacognitive knowledge and skill identify blocks to learning as early as possible and change "tools" or strategies to ensure goal attainment. Swanson (1990) found that metacognitive knowledge can compensate for IQ and lack of prior knowledge when comparing fifth and sixth grade students' problem solving. Students with a high-metacognition were reported to have used fewer strategies, but solved problems more effectively than low-metacognition students, regardless of IQ or prior knowledge.
Metacognologists are aware of their own strengths and weaknesses, the nature of the task at hand, and available "tools" or skills. A broader repertoire of "tools" also assists in goal attainment. When "tools" are general, generic, and context independent, they are more likely to be useful in different types of learning situations.
Another distinction in metacognition is executive management and strategic knowledge. Executive management processes involve planning, monitoring, evaluating and revising one's own thinking processes and products. Strategic knowledge involves knowing what (factual or declarative knowledge), knowing when and why (conditional or contextual knowledge) and knowing how (procedural or methodological knowledge). Both executive management and strategic knowledge metacognition are needed to self-regulate one's own thinking and learning.
Finally, there is no distinction between domain-general and domain-specific metacognitive skills. This means that metacognitive skills are domain-general in nature and there are no specific skills for certain subject areas. The metacognitive skills that are used to review an essay are the same as those that are used to verify an answer to a math question.

METACOGNITIVE EXPERIENCES
Metacognitive experiences involve the use of metacognitive strategies or metacognitive regulation (Brown, 1987). Metacognitive strategies are sequential processes that one uses to control cognitive activities, and to ensure that a cognitive goal (e.g., understanding a text) has been met. These processes help to regulate and oversee learning, and consist of planning and monitoring cognitive activities, as well as checking the outcomes of those activities.
For example, after reading a paragraph in a text a learner may question herself about the concepts discussed in the paragraph. Her cognitive goal is to understand the text. Self-questioning is a common metacognitive comprehension monitoring strategy. If she finds that she cannot answer her own questions, or that she does not understand the material discussed, she must then determine what needs to be done to ensure that she meets the cognitive goal of understanding the text. She may decide to go back and re-read the paragraph with the goal of being able to answer the questions she had generated. If, after re-reading through the text she can now answer the questions, she may determine that she understands the material. Thus, the metacognitive strategy of self-questioning is used to ensure that the cognitive goal of comprehension is met.
Metacognitive experience is responsible for creating an identity that matters to an individual. The creation of the identity with meta-cognitive experience is linked to the identity-based motivation (IBM) model. The identity-based motivation model implies that "identities matter because they provide a basis for meaning making and for action." A person decides also if the identity matters in two ways with meta-cognitive experience. First, a current or possible identity is either "part of the self and so worth pursuing" or the individual thinks that the identity is part of their self, yet it is conflicting with more important identities and the individual will decide if the identity is or is not worth pursuing. Second, it also helps an individual decide if an identity should be pursued or abandoned.
Usually, abandoning identity has been linked to meta-cognitive difficulty. Based on the identity-based motivation model there are naive theories describing difficulty as a way to continue to pursue an identity. The incremental theory of ability states that if "effort matters then difficulty are likely to be interpreted as meaning that more effort is needed." Here is an example: a woman who loves to play clarinet has come upon a hard piece of music. She knows that how much effort she puts into learning this piece is beneficial. The piece had difficulty so she knew the effort was needed. The identity the woman wants to pursue is to be a good clarinet player; having a metacognitive experience difficulty pushed her to learn the difficult piece to continue to identify with her identity. The entity theory of ability represents the opposite. This theory states that if "effort does not matter then difficulty is likely to be interpreted as meaning that ability is lacking so effort should be suspended." Based on the example of the woman playing the clarinet, if she did not want to identify herself as a good clarinet player, she would not have put in any effort to learn the difficult piece which is an example of using metacognitive experience difficulty to abandon an identity.

METACOGNITIVE SKILLS
Metacognition refers to learners' automatic awareness of their own knowledge and their ability to understand, control, and manipulate their own cognitive processes.2 Metacognitive skills are important not only in school, but throughout life. For example, Mumford (1986) says that it is essential that an effective manager be a person who has learned to learn. He describes this person as one who knows the stages in the process of learning and understands his or her own preferred approaches to it - a person who can identify and overcome blocks to learning and can bring learning from off-the-job learning to on-the-job situations.
As you read this section, do not worry about distinguishing between metacognitive skills and some of the other terms in this chapter. Metacognition overlaps heavily with some of these other terms. The terminology simply supplies an additional useful way to look at thought processes.
Metacognition is a relatively new field, and theorists have not yet settled on conventional terminology. However, most metacognitive research falls within the following categories:
  1. Metamemory. This refers to the learners' awareness of and knowledge about their own memory systems and strategies for using their memories effectively. Metamemory includes (a) awareness of different memory strategies, (b) knowledge of which strategy to use for a particular memory task, and (c) knowledge of how to use a given memory strategy most effectively.
  2. Metacomprehension. This term refers to the learners' ability to monitor the degree to which they understand information being communicated to them, to recognize failures to comprehend, and to employ repair strategies when failures are identified. Learners with poor metacomprehension skills often finish reading passages without even knowing that they have not understood them. On the other hand, learners who are more adept at metacomprehension will check for confusion or inconsistency, and undertake a corrective strategy, such as rereading, relating different parts of the passage to one another, looking for topic sentences or summary paragraphs, or relating the current information to prior knowledge. (See Harris et al., 1988; - add more)
  3. Self-Regulation. This term refers to the learners' ability to make adjustments in their own learning processes in response to their perception of feedback regarding their current status of learning. The concept of self-regulation overlaps heavily with the preceding two terms; its focus is on the ability of the learners themselves to monitor their own learning (without external stimuli or persuasion) and to maintain the attitudes necessary to invoke and employ these strategies on their own. To learn most effectively, students should not only understand what strategies are available and the purposes these strategies will serve, but also become capable of adequately selecting, employing, monitoring, and evaluating their use of these strategies. (See Hallahan et al., 1979; Graham & Harris, 1992; Reid & Harris, 1989, 1993.)
In addition to its obvious cognitive components, metacognition often has important affective or personality components. For example, an important part of comprehension is approaching a reading task with the attitude that the topic is important and worth comprehending. Being aware of the importance of a positive attitude and deliberately fostering such an attitude is an example of a metacognitive skill.
In the preceding paragraph, metacognition has been described as a conscious awareness of one's own knowledge and the conscious ability to understand, control, and manipulate one's own cognitive processes. This is not quite accurate; but it's difficult to define metacognition more accurately. (It's easier to point out examples of metacognitive activity than to define what it is.) It would be more accurate to say that metacognitive strategies are almost always potentially conscious and potentially controllable (Pressley, Borkowski, & Schneider, 1987). For example, good readers automatically (unconsciously) employ metacognitive strategies to focus their attention, to derive meaning, and to make adjustments when something goes wrong. They do not think about or label these skills while performing them; but if we ask them what they were doing that was successful, they can usually describe their metacognitive processes accurately. In addition, when serious problems arise - as when there is a distraction, when they encounter extremely difficult or contradictory text, or when they have to advise someone else regarding the same skill - they slow down and become consciously aware of their metacognitive activity.
While it is occasionally useful to consciously reflect on one's metacognitive processes and while it useful to make learners aware of these processes while they are trying to acquire them, these skills become most effective when they become overlearned and automatic. If these skills were not automatic and unconscious, they would occupy some of the effort of the working memory; and this would have the result of making reading, listening, and other cognitive activities less efficient. Therefore, like any other skill that becomes automatic and requires minimal activity in the working memory, metacognitive skills work best when they are overlearned and can operate unconsciously.
Learners with good metacognitive skills are able to monitor and direct their own learning processes. Like many other processes, metacognitive skills are learned by applying principles from almost every other chapter in this book. When learning a metacognitive skill, learners typically go through the following steps (Pressley, Borkowski, & Schneider, 1987):
  1. They establish a motivation to learn a metacognitive process. This occurs when either they themselves or someone else points gives them reason to believe that there would be some benefit to knowing how to apply the process. (Motivation is discussed in chapter 5).
  2. They focus their attention on what it is that they or someone else does that is metacognitively useful. This proper focusing of attention puts the necessary information into working memory (Chapter 6). Sometimes this focusing of attention can occur through modeling (Chapter 12), and sometimes it occurs during personal experience.
  3. They talk to themselves about the metacognitive process. This talk can arise during their interactions with others, but it is their talk to themselves that is essential. This self talk serves several purposes:
    • It enables them to understand and encode the process (Chapter 6).
    • It enables them to practice the process (Chapter 3).
    • It enables them to obtain feedback and to make adjustments regarding their effective use of the process (Chapters 3 and 12).
    • It enables them to transfer the process to new situations beyond those in which it has already been used (Chapters 3 and 6).
  4. Eventually, they begin to use the process without even being aware that they are doing so.

This process usually represents a high-level implementation of the phases of learning and instruction described by Gagne and discussed in Chapter 3 of this book. When teachers intervene to help students develop a metacognitive process, they often use the scaffolded instruction strategies described in chapter 12. In addition, the techniques of cooperative learning and peer tutoring (discussed in Chapter 15) often provide opportunities for students to talk to others about their thought processes; and it is often the process of formulating thoughts in order to express them to others that leads to metacognitive development (Piaget, 1964).
Finally, it is interesting to note an important relationship between the higher order skills of metacognition and the basic or factual skills that may be a part of a specific unit of instruction. Students typically learn metacognitive skills while they are involved in learning something else. If they are to do this successfully, it is extremely important that the learners have overlearned the prerequisite content knowledge for the subject matter topic being studied. If that prerequisite knowledge has not been mastered to a sufficient level of automaticity, then the working memory of the learner will be overwhelmed by the subject matter; and the result will be no time for metacognitive reflection.
For example, when children who have largely mastered the prerequisite skills try to solve a word problem in arithmetic, they can afford to talk to themselves about what they are doing, because their working memory is not totally occupied with other demands. That is, well prepared children will have time for metacognitive practice. On the other hand, when children who are missing some of these prerequisite skills try to solve the same problem, their working memory is likely to be totally occupied with a frantic need to find the basic skills and facts needed to solve the problem. If this is the case, they not only have solved the problem less effectively; but they also have little or no time for practicing or developing metacognitive skills.
When teachers and parents try to help students, it is important not to do too much thinking for them. By doing their thinking for the children they wish to help, adults or knowledgeable peers may make them experts at seeking help, rather than expert thinkers. On the other hand, by setting tasks at an appropriate level and prompting children to think about what they are doing as they successfully complete these tasks, adults can help children become independent and successful thinkers (Biemiller & Meichenbaum, 1992). In other words, it is often better to say, what should you do next?" and then to prompt the children as necessary, instead of simply telling them what to do.
The preceding paragraph describes how the intellectual rich get richer and the poor get poorer. Knowledge of factual information and basic skills provides a foundation for developing metacognitive skills; and metacognitive skills enable students to master information and solve problems more easily. If teachers hope to help low-performing students break out of their intellectual imprisonment, they must find a way to help them develop both an automatic grasp of basic skills and effective metacognitive skills to enable self-directed learning.
Misconceptions with regard to specific subject matter were discussed in Chapters 4 and 6. Wittrock (1991) notes those learners' misconceptions about learning-to-learn skills and about metacognitive strategies is also a critical source of learning problems. For example, a student who adheres to a belief that the best way to learn scientific concepts is to repeat the definitions ten times each night before going to bed is not as likely to come to an understanding of these concepts as a person who has a more effective conception of how to master these concepts.
Finally, note that a major purpose of this book is to help you develop your metacognitive skills. In chapter 1 I suggested that you apply various strategies while reading this book. If you have done so, there is a good chance that by now you understand the rationale of many of these principles and can see how they contribute to your own learning. By becoming consciously aware of these strategies and how they work, you will not only be able to use these principles to teach others more effectively, you'll also be able to use them to monitor and improve your own thought processes. That's metacognition!

META-STRATEGIC KNOWLEDGE
“Meta-Strategic Knowledge” (MSK) is a sub-component of metacognition that is defined as general knowledge about higher order thinking strategies. MSK had been defined as “general knowledge about the cognitive procedures that are being manipulated”. The knowledge involved in MSK consists of “making generalizations and drawing rules regarding a thinking strategy” and of “naming” the thinking strategy.
The important conscious act of a meta-strategic strategy is the “conscious” awareness that one is performing a form of higher order thinking. MSK is an awareness of the type of thinking strategies being used in specific instances and it consists of the following abilities: making generalizations and drawing rules regarding a thinking strategy, naming the thinking strategy, explaining when, why and how such a thinking strategy should be used, when it should not be used, what are the disadvantages of not using appropriate strategies, and what task characteristics call for the use of the strategy.
MSK deals with the broader picture of the conceptual problem. It creates rules to describe and understand the physical world around the people who utilize these processes called Higher-order thinking. This is the capability of the individual to take apart complex problems in order to understand the components in problem. These are the building blocks to understanding the “big picture” (of the main problem) through reflection and problem solving.
Characteristics of Theory of Mind: Understanding the mind and the "mental world":
False beliefs: understanding that a belief is only one of many and can be false.
Appearance–reality distinctions: something may look one way but may be something else.
Visual perspective taking: the views of physical objects differ based on perspective.
Introspection: children's awareness and understanding of their own thoughts.
Metacognitive-like processes are especially ubiquitous when it comes to the discussion of self-regulated learning. Being engaged in metacognition is a salient feature of good self-regulated learners. Reinforcing collective discussion of metacognition is a salient feature of self-critical and self-regulating social groups. The activities of strategy selection and application include those concerned with an ongoing attempt to plan, check, monitor, select, revise, evaluate, etc.
Metacognition is 'stable' in that learners' initial decisions derive from the pertinent fact about their cognition through years of learning experience. Simultaneously, it is also 'situated' in the sense that it depends on learners' familiarity with the task, motivation, emotion, and so forth. Individuals need to regulate their thoughts about the strategy they are using and adjust it based on the situation to which the strategy is being applied. At a professional level, this has led to emphasis on the development of reflective practice, particularly in the education and health-care professions.
Recently, the notion has been applied to the study of second language learners in the field of TESOL and applied linguistics in general (e.g., Wenden, 1987; Zhang, 2001, 2010). This new development has been much related to Flavell (1979), where the notion of metacognition is elaborated within a tripartite theoretical framework. Learner metacognition is defined and investigated by examining their person knowledge, task knowledge and strategy knowledge.
Wenden (1991) has proposed and used this framework and Zhang (2001) has adopted this approach and investigated second language learners' metacognition or metacognitive knowledge. In addition to exploring the relationships between learner metacognition and performance, researchers are also interested in the effects of metacognitively-oriented strategic instruction on reading comprehension (e.g., Garner, 1994, in first language contexts, and Chamot, 2005; Zhang, 2010). The efforts are aimed at developing learner autonomy, interdependence and self-regulation.
Metacognition helps people to perform many cognitive tasks more effectively. Strategies for promoting metacognition include self-questioning (e.g. "What do I already know about this topic? How have I solved problems like this before?"), thinking aloud while performing a task, and making graphic representations (e.g. concept maps, flow charts, semantic webs) of one's thoughts and knowledge. Carr, 2002, argues that the physical act of writing plays a large part in the development of metacognitive skills.
Strategy Evaluation matrices (SEM) can help to improve the knowledge of cognition component of metacogntion. The SEM works by identifying the declarative (Column 1), procedural (Column 2) and conditional (Column 3 and 4) knowledge about specific strategies. The SEM can help individuals identify the strength and weaknesses about certain strategies as well as introduce them to new strategies that they can add to their repertoire.
A regulation checklist (RC) is a useful strategy for improving the regulation of cognition aspect of one’s metacognition. RCs help individuals to implement a sequence of thoughts that allow them to go over their own metacogntion. King (1991) found that fifth-grade students who used a regulation checklist outperformed control students when looking at a variety of questions including written problem solving, asking strategic questions, and elaborating information.
Metacognitive strategies training can consist of coaching the students in thinking skills that will allow them to monitor their own learning. Examples of strategies that can be taught to students are word analysis skills, active reading strategies, listening skills, organizational skills and creating mnemonic devices. Metacognitive strategies refers to methods used to help students understand the way they learn; in other words, it means processes designed for students to 'think' about their 'thinking'.
Teachers who use metacognitive strategies can positively impact students who have learning disabilities by helping them to develop an appropriate plan for learning information, which can be memorized and eventually routine. As students become aware of how they learn, they will use these processes to efficiently acquire new information, and consequently, become more of an independent thinker. Below are three metacognitive strategies, which all include related resources, that can be implemented in the classroom
            Great for reading comprehension and problem solving. Think-alouds help students to consciously monitor and reflect upon what they are learning. This strategy works well when teachers read a story or problem out loud and periodically stop to verbalize their thoughts. This allows students to follow the teacher's thinking process, which gives them the foundation they need for creating their own strategies and processes that can be useful for understanding what they are trying to comprehend.
 Great for solving word problems. These organizational tools support students in the decision-making process because they serve as an aid for planning and self-evaluation. Typically they ask what students know and need to know to arrive at an answer, and emphasize the need to reread the problem and self-check responses.
Great for math instruction. Explicit teacher modeling helps students understand what is expected of them through a clear example/model of a skill or concept. When a teacher provides a easy to follow procedure for solving a problem, students have a memorable strategy to use for approaching a problem on their own.

METACOGNITION AND COGNITIVE STRATEGY INSTRUCTION
Although most individuals of normal intelligence engage in metacognitive regulation when confronted with an effortful cognitive task, some are more metacognitive than others. Those with greater metacognitive abilities tend to be more successful in their cognitive endeavors. The good news is that individuals can learn how to better regulate their cognitive activities. Most often, metacognitive instruction occurs within Cognitive Strategy Instruction programs.
Cognitive Strategy Instruction (CSI) is an instructional approach which emphasizes the development of thinking skills and processes as a means to enhance learning. The objective of CSI is to enable all students to become more strategic, self-reliant, flexible, and productive in their learning endeavors (Scheid, 1993). CSI is based on the assumption that there are identifiable cognitive strategies, previously believed to be utilized by only the best and the brightest students, which can be taught to most students (Halpern, 1996). Use of these strategies have been associated with successful learning (Borkowski, Carr, & Pressley, 1987; Garner, 1990).
Metacognition enables students to benefit from instruction (Carr, Kurtz, Schneider, Turner & Borkowski, 1989; Van Zile-Tamsen, 1996) and influences the use and maintenance of cognitive strategies. While there are several approaches to metacognitive instruction, the most effective involve providing the learner with both knowledge of cognitive processes and strategies (to be used as metacognitive knowledge), and experience or practice in using both cognitive and metacognitive strategies and evaluating the outcomes of their efforts (develops metacognitive regulation). Simply providing knowledge without experience or vice versa does not seem to be sufficient for the development of metacognitive control (Livingston, 1996).
The study of metacognition has provided educational psychologists with insight about the cognitive processes involved in learning and what differentiates successful students from their less successful peers. It also holds several implications for instructional interventions, such as teaching students how to be more aware of their learning processes and products as well as how to regulate those processes for more effective learning.

MENTAL ILLNESS AND METACOGNITION
In the context of mental health, metacognition can be loosely defined as the process that "reinforces one's subjective sense of being a self and allows for becoming aware that some of one's thoughts and feelings are symptoms of an illness" The interest in metacognition emerged from a concern for an individual’s ability to understand their own mental status compared to others as well as the ability to cope with the source of their distress. These insights into an individual's mental health status can have a profound effect on the over-all prognosis and recovery. Metacognition brings many unique insights into the normal daily functioning of a human being. It also demonstrates that a lack of these insights compromises ‘normal’ functioning. This leads to less healthy functioning. In the Autism spectrum, there is a profound inability to feel empathy towards the minds of other human beings. In people who identify as alcoholics, there is a belief that the need to control cognitions is an independent predictor of alcohol use over anxiety. Alcohol may be used as a coping strategy for controlling unwanted thoughts and emotions formed by negative perceptions. This is sometimes referred to as self medication.

WORKS OF ART AS METACOGNITIVE ARTIFACTS
The concept of metacognition has also been applied to reader-response criticism. Narrative works of art, including novels, movies and musical compositions, can be characterized as metacognitive artifacts which are designed by the artist to anticipate and regulate the beliefs and cognitive processes of the recipient, for instance, how and in which order events and their causes and identities are revealed to the reader of a detective story. As Menakhem Perry has pointed out, mere order has profound effects on the aesthetical meaning of a text. Narrative works of art contain a representation of their own ideal reception process. They are something of a tool with which the creators of the work wish to attain certain aesthetical and even moral effects.
Mind wandering and metacognition
There is an intimate, dynamic interplay between mind wandering and metacognition. Metacognition serves to correct the wandering mind, suppressing spontaneous thoughts and bringing attention back to more "worthwhile" tasks.
METACOGNITION AND INTELLIGENCE
Metacognition, or the ability to control one's cognitive processes (self-regulation) has been linked to intelligence (Borkowski et al., 1987; Brown, 1987; Sternberg, 1984, 1986a, 1986b). Sternberg refers to these executive processes as "metacomponents" in his triarchic theory of intelligence (Sternberg, 1984, 1986a, 1986b). Meta components are executive processes that control other cognitive components as well as receive feedback from these components. According to Sternberg, metacomponents are responsible for "figuring out how to do a particular task or set of tasks, and then making sure that the task or set of tasks are done correctly" (Sternberg, 1986b, p. 24). These executive processes involve planning, evaluating and monitoring problem-solving activities. Sternberg maintains that the ability to appropriately allocate cognitive resources, such as deciding how and when a given task should be accomplished, is central to intelligence.
BAIJU AYYAPPAN K
ASSISTANT PROFESSOR IN SOCIAL SCIENCE 
CUTEC CHALAKUDY 

No comments:

Post a Comment